
CHAPTER 2

MEASURING THE THERMAL CONDUCTIVITY OF THIN FILMS:
3 OMEGA AND RELATED ELECTROTHERMAL METHODS

Chris Dames

Department of Mechanical Engineering, University of California at Berkeley, 6107 Etcheverry
Hall, Berkeley CA 94720-1740, USA; E-mail: cdames@berkeley.edu

This review describes the major electrothermal methods for measuring the thermal conduc-
tivity of thin films in both cross-plane and in-plane directions. These methods use microfab-
ricated metal lines for joule heating and resistance thermometry. The 3ω method for cross-
plane measurements is described thoroughly, along with a related DC method. For in-plane
measurements, several methods are presented for suspended and supported films. Various
practical matters are also discussed, including parasitic thermal resistances, background sub-
traction, and instrumentation issues. The review contains sufficient detail to be accessible to
researchers new to the field of thin film thermal conductivity measurements, and also includes
information relevant for 3ω measurements of bulk substrates. The review also contains new
analytical results for the variable-linewidth 3ω method, the related heat spreader method,
and the distinction between isothermal and constant flux heater approximations.

1. INTRODUCTION

1.1 Motivation, Purpose, and Scope

Thin films, superlattices, graphene, and related planar materials are of broad technolog-
ical interest for applications including transistors, memory, optoelectronic devices, opti-
cal coatings, micro-electromechanical systems, photovoltaics, and thermoelectric energy
conversion. Thermal performance is a key consideration in many of these applications,
motivating experimental efforts to measure the thermal conductivity k of these films.

The thermal conductivity of thin film materials is usually smaller than that of their bulk
counterparts, sometimes dramatically so. For example, at room temperature, k of a 20 nm
Si film can be a factor of five smaller than its bulk single-crystalline counterpart,1 and k
along the plane of a single layer of encapsulated graphene is at least 10 times smaller than
the corresponding value for bulk graphite.2 Such thermal conductivity reductions generally
occur for two basic reasons. First, compared to bulk single crystals, many thin film syn-
thesis technologies result in more impurities, disorder, and grain boundaries, all of which
tend to reduce the thermal conductivity. Second, even an atomically perfect thin film is ex-
pected to have reduced thermal conductivity due to boundary scattering, phonon leakage,
and related interactions. Both basic mechanisms generally affect in-plane (kx) and cross-
plane (kz) transport differently, so that the thermal conductivity of thin films is usually
anisotropic, even for materials whose bulk forms have isotropic k.
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NOMENCLATURE

b heater half-width [m]
C volumetric heat capacity [J/m3K]
d layer thickness [m]
D thermal diffusivity [m2/s]
h heat transfer coefficient for

convection and/or radiation
[W/m2K]

I current [A]
j

√−1
k thermal conductivity [W/m K]
L heater length [m]
p probe linewidth [m]
Q heat flow [W]
R thermal resistance [K/W]; with

subscript e, electrical resistance [Ω]
T temperature [K]
w half-length of suspended film [m]
V voltage [V]
x in-plane coordinate, normal

to the heater length [m]
X in-phase electrical transfer

function [K/W]
y in-plane coordinate, along

the heater length [m]
Y out-of-phase electrical

transfer function [K/W]
z cross-plane coordinate [m]
Z thermal impedance [K/W]

Greek Symbols
α temperature coefficient

of resistance [K−1]

β fin parameter [m−1]
λ thermal wavelength [m]
σ Stefan-Boltzmann constant,

5.67 × 10−8 W/m2 K4

θ temperature difference,
T − T∞ [K]

τ thermal diffusion time [s]
ω angular frequency [rad/s]

Subscripts and Superscripts
(unsubscripted) film
” area normalized
∞ environment
0 condition of negligible

self-heating (in Re0, the
limit I1 → 0)

1, 2 upper and lower surfaces
of film or substrate

1ω, 3ω harmonic number
c contact
char characteristic
cond conduction
conv convection
e electrical
F film (also unsubscripted)
H heater
i insulation
rad radiation
std standard
S substrate
x in plane
z cross plane

This review chapter is intended as a detailed introduction to the major electrothermal
methods used to measure the thermal conductivity of thin films in both cross-plane and
in-plane directions. The scope is strictly limited to techniques where both heating and
temperature sensing are electrically based, the most well-known being the “3ω method.”3

This chapter excludes a large body of techniques that are optically based, such as laser
thermoreflectance methods4−7 and Raman methods.8−10
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1.2 Audience

This chapter is intended primarily for graduate students and other researchers who are
new to this field but desire to perform their own thin film thermal measurements with
confidence. Therefore, besides describing the basic principles of the various methods, this
chapter details their limits of applicability and the major practical requirements for an
accurate measurement.

In addition, readers interested in the traditional 3ω method for bulk substrates11 may
find useful information in the discussion of the closely related thin film 3ω method in
Sections 2 and 3. Specifically, several of the major measurement issues summarized later
in Table 3 are also relevant for measurements of bulk substrates.

Experienced researchers already familiar with thin film thermal measurements may
also find some utility in this chapter as a coherent reference to the many measurement
issues scattered throughout the primary literature, as exemplified later in Table 3. As a
review, this chapter is based largely on previously published results, but specialists may
also be interested in a few new results not published elsewhere, as follows:

• Comparison between isothermal and constant–heat flux heater assumptions (Sec-
tion 3.10)

• Simplified expression for the effective film resistance in the narrow-heater limit
[Eq. (18)]

• Sensitivity and limits of applicability for the variable-linewidth 3ω method (Sec-
tion 6.1)

• Heat spreader method and its connection to variable-linewidth 3ω (Section 6.2 and
Fig. 12)

• Issues around the placement of voltage probes in the distributed self-heating method
(Fig. 11).

1.3 Related Reviews

Techniques for measuring the thermal conductivity of thin films have been developed in-
tensively since the late 1980s. Among the many articles and books that address the broader
field of microscale heat transfer, four reviews in particular have emphasized thin film mea-
surements. Cahill et al.12 described early uses of the now very well established 3ω method,
as well as a related DC method, for cross-plane measurements. Goodson and Flik,13 Mir-
mira and Fletcher,14 and most recently Borca-Tasciuc and Chen15 each reviewed the con-
temporaneous state of the art for both in-plane and cross-plane methods, including optical
as well as electrothermal methods. Compared to those prior works, the present review gives
a refreshed perspective as of 2012, and excludes optical techniques, but goes into greater
detail about the electrothermal methods.
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1.4 Organization of the Chapter

The first half of this chapter deals with cross-plane measurements, emphasizing the 3ω
method. Section 2 introduces the basic concepts, while Section 3 details many of the ther-
mal design and analysis issues. Section 4 then describes various issues related to instru-
mentation and hardware, with relevance to both cross-plane and in-plane measurements.
The chapter ends with in-plane measurements, distinguishing between suspended (Sec-
tion 5) and supported (Section 6) films. A selection of examples from the literature for
these various techniques are summarized in Table 1.

2. CROSS PLANE: BASIC CONCEPTS

2.1 Basic Measurement Concept

Figure 1 shows the basic principle used to measure the cross-plane thermal conductivity
of thin films with electrothermal methods. The film of interest (cross-plane thermal con-
ductivity kz, thickness d) is grown or deposited in intimate contact with a substrate of high
thermal conductivity, and a long, narrow strip heater (width 2b, length L) is then deposited
on top of the film. Typical order of magnitude values for selected quantities are given in
Table 2. These samples have very fast thermal response times; for example, the thermal
diffusion time τ ≈ L2

char/D, where D is the thermal diffusivity, is typically measured in
milliseconds for the substrate and microseconds for the film itself.

The sample is placed in a temperature-controlled environment at T∞. Then electri-
cal current (DC or AC) is passed through the heater, and the resulting joule heating Q
causes a small temperature drop TF,1 − TF,2 through the film. In the case of steady DC
heating, all of the heat flows through the substrate and into the environment, whereas a
major advantage of AC heating is that the frequency can be chosen to localize the fluc-
tuating temperature field within the film and substrate. The upper film temperature TF,1

is frequently approximated as the average heater temperature TH , which is determined by
monitoring changes in the heater’s electrical resistance, Re(T ), where the subscript “e”
indicates electrical. Strategies for determining the lower film temperature TF,2 will be dis-
cussed later.

Approximating the heat flow through the film as quasi static and 1D gives

RF =
d

2kzbL
(1)

where d, b, and L are known and RF is determined from the experiment using

RF =
TF,1 − TF,2

Q
(2)

Of course, many practical issues must be considered for an experiment to be a good ap-
proximation of the idealized situation just described. These complications are discussed
below in Section 3.
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TABLE 1: A selection of references for the major electrothermal techniques used to measure the thermal conductivity of thin films
(sources: Refs. 2, 3, 24–28, 30, 33, 43, 70–76, and 78–83). This table is 2 pages wide

References Direction Suspended or
supported

Film
Substrate

Material Thickness d
[µm]

Extent
// to q[a] [µm]

Extent
⊥ to q[b] [µm]

3ω method
(cross plane)
3 Cross Supp. a-Si:H 0.2 – 1.5 d ∞ Si, MgO
30 Cross Supp. a-SiO2 0.05 – 0.5 d ∞ Si
82 Cross Supp. Bi2Te3/Sb2Te3SL 0.4 – 0.6 d ∞ GaAs
33 Cross Supp. Si/SiGe & SiGe/SiGe SLs 3 d ∞ Si
Steady-state
cross-plane
method
27 Cross Supp. a-SiO2 0.007 – 0.1 d ∞ Al2O3

24 Cross Supp. a-SiO2 1.4 d ∞ Si
13 Cross Supp. a-SiO2 0.29 – 0.36 d ∞ Si
25 Cross Supp. a-SiO2 0.57 – 2.28 d ∞ Si
26 Cross Supp. Polyimide 0.5 – 2.1 d ∞ Si
Central line
heater method
70 In Susp. Si (doped, poly) 1.5 50 – 100 5 – 10 Si
73 In Susp. Si3N4/SiO2/Si3N4 stack 0.2/0.4/0.2 ∼ 500 ∼ 10, 000 Si
76 In Susp. Diamond 3 – 13 1000 4000 Si
26 In Susp. Polyimide 2.2 800 4000 Si
78 In Susp. Si 5 500 (?) Si
72 In Susp. Si 3 500 20,000 Si
71 In Susp. Si (etched pores) 4 – 7 108 2000 Si
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TABLE 1: Continued

References Direction Suspended or
supported

Film
Substrate

Material Thickness d
[µm]

Extent
// to q[a] [µm]

Extent
⊥ to q[b] [µm]

Distributed self-
heating method
75 In Susp. Al, Ag 0.05 – 0.1 5000 10,000 (?)
74 In Susp. Bi 0.02 – 0.4 > 1000(?) > 1000 Cu
70 In Susp. Si (doped, poly) 1.5 50 – 100 5 – 10 Si
79 In Susp. Pt 0.028 2.65 0.26 Si
1 In Susp. Si 0.02 – 0.1 50 – 250 5 – 20 SOI
Variable-
linewidth 3ω

method
43 In (both) Supp. Polyimide 1.4 – 2.4 Q varies: d×∞×∞ Si
26 In (both) Supp. Polyimide 0.5 – 2.5 Q varies: d×∞×∞ Si
80 In (both) Supp. Si/Ge & Ge SLs 1.1 – 1.2 Q varies: d×∞×∞ Si, SOI
Heat spreader
method
81 In Supp. Si 0.4 – 1.6 ∞ ∞ SOI
2 In Supp. graphene/graphite 0.0004 – 0.01 15 10 Si
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TABLE 1: Continued

References

Other Layers (e.g., insulation,
support, separate heater)

Heater Temperature
Note

Material Thickness (µm) Material Width 2b (µm) How
Msr?

Min
T [K]

Max
T [K]

3ω method
(cross plane)
3 None Au 25 TCR 80 400 Differential 3ω (bare substrate)

30 None Al 28 TCR 293 333
Differential 3ω (vary d), good ex-
ample of RH−∞ versus d, see
Fig. 4(b)

82 Si3N4 0.06–0.1 (?) 10–20 TCR 300 300 Differential 3ω (omit SL)
33 Buffer, cap, SiO2 2, 0.5, 0.1 Au 16–25 TCR 50 320 Differential 3ω (omit SL)
Steady-state
cross-plane
method

27 None Rh (Fe doped) 2 TCR 10 200 Extra T sensor near heater for TF,2,
see Fig. 4(a)

24 None Al; poly-Si 100 TCR 120 530 Embedded T sensor for TF,2, see
Fig. 4(a)

13 None Al 5 TCR 280 420
Extra T sensor near heater for TF,2,
see Fig. 4(a). 2D conduction analy-
sis

25 None Al; poly-Si 100 TCR 263 413 Embedded T sensor for TF,2, see
Fig. 4(a). 2D conduction analysis

26 SixNy 0.1 Al 100 TCR 260 360 Embedded T sensor for TF,2, see
Fig. 4(a). Mesa shapes 1D flow
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TABLE 1: Continued

References

Other Layers (e.g., insulation,
support, separate heater) Heater Temperature

Note
Material Thickness (µm) Material Width 2b (µm) How

Msr?
Min
T [K]

Max
T [K]

Central line
heater method
70 None Si (doped) 5 TCR 300 400

73 None metal (?) (?) TCR 80 400
Emissivity from measuring two
samples, D from transient re-
sponse. 2D conduction analysis

76 None metal (?) 50 TC Room T
Microfabricated TCs to measure T .
2D conduction analysis

26 None Al 4 TCR 260 360 Applies 3ω for in-plane. 2D con-
duction analysis

78 SiO2/passive 0.5/1.1 Al; Si (doped) 3 – 4 TCR 100 300
Extra T sensors near heater and
substrate help TF,1 and TF,2, see
Fig. 8(b)

72 Polyimide/
LTO/SiO2

2/0.3/0.34 Al 2 TCR 15 300
Extra T sensors near heater and
substrate help TF,1 and TF,2, see
Fig. 8(b)

71 SixNy 0.24 Au 10 TCR 50 300 Extra T sensor near heater and sub-
strate helps TF,2, see Fig. 8(b)

Distributed self-
heating method

75 None (same as film) ED 300 600
Obtains emissivity from T (x),
measure T using electron diffrac-
tion

74 Polymer (?) 0.04 (same as film) TCR 80 400
Get emissivity by measuring sec-
ond sample, transient response
gives D

70 None (same as film) TCR 300 400
79 None (same as film) TCR 80 330
1 Al, CoFe 0.1, 0.075 Al or CoFe (same as film) TCR 50 450 Differential (omit Si)
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TABLE 1: Continued

References

Other Layers (e.g., insulation,
support, separate heater) Heater Temperature

Note
Material Thickness (µm) Material Width 2b (µm) How

Msr?
Min
T [K]

Max
T [K]

Variable-
linewidth 3ω

method

43 SixNy 0.15 Al 1, 5.5, and 200 TCR Room T (?) Approximate substrate as isothermal,
kx/kz ≈ 4 – 6

26 SixNy 0.1 Al 4–200 TCR Room T
Approximate substrate as isothermal
(?), kx/kz ≈ 6

80 SixNy 0.1 Metal (?) 2, 30 TCR 80 300 Differential 3ω (omit SL), kx/kz ≈
3 – 5

Heat spreader
method
81 SiO2 0.5 Si (doped) 2 TCR 20 300 1D fin analysis is justified

2 SiO2 0.03 Au 0.3 – 0.5 TCR 40 300 3D conduction analysis (numerical),
validated with Pt film

∞ Very large.
(?) Unclear, unknown, or not given.
d Film thickness.
ED Electron diffraction.
SL Superlattice.
TC Thermocouple.
TCR Temperature coefficient of resistance.
[a] Extent of film parallel to the heat flux direction, corresponding to dimension w of Figs. 8–11. Primarily relevant for in-plane

measurements.
[b] Extent of film perpendicular to the heat flux direction, corresponding to dimension L of Figs. 8–11. Primarily relevant for in-plane

measurements.
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FIG. 1: Measuring the cross-plane thermal conductivity of a thin film using 3ω or steady
state methods.

TABLE 2: Typical order of magnitude values in 3ω experiments to measure the cross-
plane thermal conductivity of a thin film. Representative heater dimensions are half-width
b = 20 µm and length L = 2000 µm. The thermal wavelength is given at a typical heater
frequency of 5000 rad/s (electrical current of around 400 Hz)

Thickness,
d

Thermal con-
ductivity, k

Heat ca-
pacity, C

Thermal wavelength at
wH = 5000 rad/s,
λ =

√
D/ωH

Typical
materials

[µm] [W/m K] [J/m3 K] [µm]

Heater Au, Pt, Al 0.2 100

2 × 106

100

Thin film a-SiO2, polymer,
superlattice 0.5 1 10

Substrate Si, Al,
MgO, GaAs 500 150 120

2.2 AC Response: 3ω Methods and Beyond

In the case of steady DC heating, it is straightforward to determine TH from measurements
of the heater’s current and voltage and its previously calibrated Re(T ) curve. However,
when the heater is driven with a sinusoidal current, some care is needed to correctly analyze
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all of the resulting voltage signals, requiring attention to the coupling between electrical
and thermal domains and the various harmonics. The basic idea is as follows (Fig. 2). The
electrical current at angular frequency ω causes joule heating at DC and 2ω. Because the
response in the thermal domain is linear, this 2ω heating causes temperature fluctuations
also at 2ω, with an amplitude and phase that depends on the thermal properties of the
system. This perturbs the heater’s electrical resistance at 2ω, which when multiplied by the
driving current at ω finally causes a small voltage signal across the heater at a frequency
3ω. Thus, this class of measurements is aptly known as “3 omega” methods, and was
first applied to measure the thermal conductivity of films and substrates by Cahill and
coworkers.3,11,12,16

We now show how this 3ω voltage depends on the sample’s thermal properties. To keep
the analysis general, the sample’s thermal response is initially described by a generic ther-
mal transfer function in the frequency domain, Z, which relates the average temperature
rise of the heater to the heat input, Q. The general solution of the combined electrothermal
problem for all harmonics and arbitrary Z was derived in Ref. 17. In terms of Fig. 2, if the
heater is driven at

Q(t) = Q0 sin(ωHt) (3)

its temperature response is

TH(t)− T∞ = Q0 [Re(Z) sin(ωHt) + Im(Z) cos(ωHt)] (4)

To link this thermal response with the electrical domain, we focus on the simplest case
where the heater is driven with a sinusoidal current,

I = I1ω sin(ωt) (5)

FIG. 2: (a) A generic system whose thermal transfer function Z (ωH) can be measured
using an electrothermal technique such as the 3ω method.17 The different colored blocks
represent arbitrary materials and geometries. (b) Relationships between sinusoidal current
and voltages and the thermal transfer function, used to understand the generic 3ω method.
(Here ⊗ denotes convolution and Zt is the inverse Fourier transform of Z.)
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where the current is defined in terms of sine rather than cosine to be consistent with certain
commercial lock-in amplifiers. In this case the rms voltages at the various harmonics nω

can be expressed as17

Vnω,rms

2αR2
e0I

3
1ω,rms

= Xnω(ω) + jYnω(ω) (6)

where Re0(T ) = lim [V1ω/I1ω]I→0 is the zero-current electrical resistance at the tem-
perature being measured, α(T ) = (1/Re0)/(dRe0/dT ) is the temperature coefficient of
resistance, I1ω,rms = I1ω/

√
2, j =

√−1, and Xnω and Ynω are the in-phase and out-of-
phase electrical transfer functions.

Expressions for all eight transfer functions (Xnω, Ynω, n = 0...3) are given in Table 1
of Ref. 17. Here we give only those for the third harmonic voltages, which are the most
useful in practice because they are directly proportional to the real and imaginary parts of
the thermal transfer function at a single frequency,

X3 (ω) = −1
4

Re [Z(2ω)] (7a)

Y3 (ω) = −1
4

Im [Z(2ω)] , (7b)

so that
V3ω,rms,in-phase = −1

2
αR2

e0I
3
1ω,rmsRe [Z (2ω)] (8a)

V3ω,rms,out-of-phase = −1
2
αR2

e0I
3
1ω,rmsIm [Z (2ω)] (8b)

Thus, for a driving current at ω, the voltage at 3ω is directly proportional to the thermal
transfer function at 2ω. (For example, a current at 500 rad/s causes a voltage at 1500 rad/s
related to the system’s thermal response at 1000 rad/s.) This means that the entire thermal
transfer function is readily obtained using a frequency sweep.

It is sometimes desirable to have explicit expressions for the temperature fluctuations,

θ(t) = θDC + θ2ω,sin sin (2ωt) + θ2ω,cos cos (2ωt) (9)

where θ ≡ T − T∞. For the 2ω temperature fluctuations, it is readily shown that

θ2ω,cos,rms =
√

2 V3ω,rms,in-phase

αRe0 I1ω,rms
(10a)

θ2ω,sin,rms =
−√2 V3ω,rms,out-of-phase

αRe0 I1ω,rms
(10b)

This is equivalent to the expression given by Cahill,11,18 whose quantity ∆T is equivalent
to the amplitude θ2ω here. Similarly, it can also be shown that

θDC − 1√
2
θ2ω,cos,rms =

V1ω,in-phase,rms − I1ω,rmsRe0

αI1ω,rmsRe0
(11a)
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1√
2
θ2ω,sin,rms =

V1ω,out-of-phase,rms

αI1ω,rmsRe0
(11b)

As we shall briefly mention in Section 3.2 the primary utility of Eqs. (11) is in estimating
the DC temperature rise to confirm that it may be neglected.

2.3 Advantages of AC methods
The general sample configuration shown in Fig. 1 applies to both AC and DC measurement
methods. As suggested by Table 1, DC methods were used primarily in the 1990s while
most more recent works have emphasized the 3ω method, which as an AC approach offers
several important advantages.

2.3.1 Insensitive to Boundary Condition between Substrate and Environment
(RS−∞)

As shown in Fig. 3, the heating frequency is generally chosen such that the thermal wave-
length in the substrate,11

λS =
√

DS

ωH
(12)

where DS is the thermal diffusivity of the substrate, is several times smaller than the sub-
strate thickness dS . Thus, because the oscillating portion of the thermal signal is localized
well within the substrate, the AC thermal response is insensitive to the boundary condition
between the substrate and environment, indicated as RS−∞ in Fig. 1. This is beneficial
because such contact resistances are generally poorly controlled and may not be negligi-
ble, so removing them simplifies the analysis and interpretation. This also helps improve
sensitivity by increasing the fraction of the total temperature drop (T − T∞) that occurs
across the film. However, it should also be remembered that the DC thermal response al-
ways experiences the full resistance path from heater to substrate, increasing the average
temperature of the film (Section 3.2).

FIG. 3: The 3ωmethod to measure the cross-plane thermal conductivity of a thin film. (a,b)
Schematics of the temperature field at two different frequencies. (c) Frequency dependence
of the temperature rise.
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2.3.2 Quantifying and Reducing the Substrate Contribution (RS)

A related benefit is that the effective value of RS can also be reduced by increasing ωH .
For the strip-heater configuration at moderately low frequencies (b ¿ λS ¿ dS),

ZS =
1

πLkS

[
ln

(
λS

b

)
+ η− j

π

4

]
(13)

where η ≈ 0.923 [the analytical result19 for η is exactly 3/2 minus the Euler constant,
although in early work a value η = 1.05 was reported to be in better agreement with
experiments].20 Note that the first term in Eq. (13) is exactly the radial conduction resis-
tance of a cylindrical half shell of inner radius b and outer radius λS . Thus, by increasing
the heater frequency, the effective RS is somewhat reduced, further improving the sensi-
tivity of TH −T∞ to RF , as well as the thermal response time. Although beyond the scope
of this article, we also note in passing that measuring the slope of V3ω,rms with respect to
ln(ω) is the basis of an important method for measuring kS , the original “3ω method.”11

2.3.3 Less Sensitive to Radiation and Convection Losses

Equation (13) shows that the thermally active volume of the sample extends only a distance
of order λS into the substrate. This is equivalent to using a substrate shaped as a half
cylinder of length L and radius ∼ λS , which as pointed out by Cahill11 is favorable for
minimizing the impact of heat losses. We give the basic argument here. Heat is lost from
the top surface to the surroundings by radiation and, if the sample is not in high vacuum, by
convection. These effects are considered jointly using a combined heat transfer coefficient
h for convection plus radiation, h = hconv + hrad, where

hrad = 4εσT 3
avg (14)

Tavg is the average temperature of the sample and surroundings, ε is the emissivity of the
sample surface, and σ is the Stefan-Boltzmann radiation constant. We now consider two
limiting cases.

First, the best case is when RF dominates the total thermal resistance. In this case, there
is no particular sensitivity advantage of AC versus DC methods with regard to radiation
and convection, and both are very robust against such losses. The conduction heat flow is
Qcond = 2kbL(TH − T∞)/d, while the losses are Qrad+conv = 2hbL(TH − T∞), so that
the loss ratio is simply the film Biot number, Qrad+conv/Qcond ≈ hd/k. For typical films
of k ≈ 1 W/m K and d ≈ 1 µm, the losses are <1% as long as h < 10,000 W/m2K, which
is very easily satisfied. For example, typical values are hrad < 230 W/m2K for radiation at
T < 1000 K and hconv ≈ 2–25 W/m2 K for natural convection in air.21 (Note that these
values of hconv are appropriate for macroscopic samples. Values for the microscopic heater
strips as used in 3ω experiments are not readily apparent in the literature but will be subject
to two competing effects. The narrower heater width tends to increase hconv, while the
surrounding unheated substrate tends to impede air flow and reduce hconv.) Another limit
is when RS dominates the total thermal resistance, and it is this case where the AC method
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does offer a potential advantage11 compared to the DC approach. In this limit Qrad+conv

scales as hλSL(TH−T∞), while from Eq. (13), Qcond scales as πkSL(TH−T∞), ignoring
the weak logarithmic function in square brackets of Eq. (13). Thus, the relative impact of
heat losses is

Qrad+conv

Qcond
≈ hλS

2kS
(15)

where the correct prefactor 1/2 has been obtained from Ref. 11. For a typical experiment
with λS ≈ 100 µm and kS ≈ 100 W/m K, the losses are <1% if h < 20,000 W/m2K,
which as noted above is very easily satisfied. In contrast, DC measurements on larger
samples with characteristic lengths at the centimeter scale would reduce the threshold h to
the low 100s of W/m K.

2.3.4 Insensitive to DC Voltage Artifacts from Thermoelectric Effects and
Low-Frequency Drifts

For experiments requiring the utmost accuracy, AC methods are also beneficial because by
moving the measurement away from DC, they can minimize the impacts of 1/f noise and
other low-frequency drifts. For example, one possible source of such drifts is the use of
several metals with dissimilar Seebeck coefficients. A typical cryostat experiment might
use gold for the heater line and wire bonding, constantan for connections inside the cryo-
stat, and copper wires outside. The important junctions are those along the path of the
two voltage probes used in four-probe resistance thermometry. For example, if the V + and
V − junctions at a feedthrough connector have their temperatures evolve differently over
the course of an experiment, the resulting thermoelectric voltage drifts cause artifacts that
could be misinterpreted as changes in the sample resistance. Such thermoelectric artifacts
are absent in AC measurements, as well as in DC measurements that average voltages ob-
tained from forward and reverse current polarities. It is also good practice to ensure that any
junctions between dissimilar metals are located in regions of the cryostat that are locally
isothermal at any given time.

3. CROSS PLANE: THERMAL DESIGN AND ANALYSIS

In this section, we describe various thermal issues that are important for the cross-plane
measurement method shown in Figs. 1 and 3, with major emphasis on the 3ω method first
presented by Cahill et al.3 After presenting the important differential 3ω method and a
comment about the background temperature rise, this section is organized around Table 3,
which summarizes the major thermal design issues. As a concrete example, Table 4 sum-
marizes numerical results for these design issues for a specific case study, based on the
representative parameters from Table 2.

3.1 Determining the T Drop Across the Film: The Differential 3ω Method
Referring to Fig. 1, the most obvious challenge in these measurements is to determine the
temperature drop across the film. Here we briefly describe strategies for determining TF,1

and TF,2, and then the very important differential 3ω method.
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TABLE 3: Summary of thermal design rules for 3ω measurements of the cross-plane ther-
mal conductivity of films. Note the distinction between the thermal wavelengths in the
film (λ) and the substrate (λS), which typically differ by an order of magnitude (Table 2).
Approximations iv–vi and ix are also relevant for 3ω measurements of kS of bulk subst-
rates11

Desired approxi-
mation

Criteria References Notes

i Substrate is isothe-
rmal (kS →∞) Error ≈ (k/kS)2 42

• Usually safely neglected;
else use known correction
factor

ii
Film heat flow is
1D (neglect edge
effects)

(b/d)(kz/kx)1/2 > 5.5 for 5%
error
(b/d)(kz/kx)1/2 > 30 for 1%
error

42

• Error cannot be removed by
differential 3ω

• If heater is not wide enough
but substrate approx. isother-
mal, use Eqs. (16), (17), or
(18)
• Or, pattern micro-
mesa24,26,32

iii
Film heat flow is
quasi-static (C →
0)

λ/d > 2.5 for 5% error
λ/d > 5.7 for 1% error

44

• Error cannot be removed by
differential 3ω

• Possible concern for films
of very low k; use lower wH

iv Substrate is semi-
infinite (dS →∞)

dS /λS > 5 for 1% error 42 • Smaller dS /λS is acceptable
for differential 3ω

• Exact solution is known for
any dS /λS

dS /λS > 2 appears accept-
able

45

v
Substrate sees
heater as line
source (b → 0)

λS /b > 2.1 for 5% error
λS /b > 5 for 1% error 42

• Smaller λS /b is acceptable
for differential 3ω

•Exact solution is known for
any λS /bλS /b > 1.6 for 5% error 47

vi Heater is infinitely
long (L →∞)

L/λS > 4.7 for 1% error in 4-
pad config.
L/λS > 15 for 1% error in 2-
pad config.

45
• 4 pad is recommended
• Smaller L/λS is acceptable
for differential 3ω

vii Heater is massless
(CHdH → 0)

Errors approximately
(CH /C)(dHd/λ2) 42, 44 •Errors usually small be-

cause often λ > d À dH

viii Heater is uniform
heat source

Safe to neglect lateral heat re-
distribution within heater if
(dHd/b2)(kH /k) ¿ 1

(This work)

•Usually neglected. Errors
of <3% for (b/d)(kz/kx)1/2 >
4.8
• Error cannot be removed by
differential 3ω

ix
Convection and ra-
diation negligible
(h → 0)

Qrad+conv/Qcond ≈
max (hd/k, hλS/2kSub) 11

• Usually well satisfied
• See also Section 2.3,
Eq. (15)
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The upper film temperature TF,1 is essentially always taken to be equal to the heater
temperature TH , which requires neglecting RH−F compared to RF . This is usually a good
assumption for metallic heaters deposited directly on dielectric films, for which the thermal
contact resistances R

′′
c are typically 10−8–10−7 m2K/W.22,23

Determining the lower film temperature TF,2 is a greater challenge. As noted above,
one of the major advantages of AC experiments is that the heating frequencies can be cho-
sen to localize the oscillating temperature field within the film and substrate, eliminating
RS−∞ and making RS amenable to exact analytical calculation. Thus, probably the most
common method to determine TF,2 is to calculate it from the experimental heat flux and
RS from equations such as Eq. (13). This requires knowledge of kS , which itself may be
measured directly from the “slope method” mentioned below Eq. (13), or estimated from
handbook values. This calculation is far more forgiving for substrates with large kS as
compared to k of the film (see also Section 3.3).

A less common method to determine TF,2 is to measure it using a nearby T sensor, as
shown in Fig. 4(a). Embedding a T sensor between film and substrate,24−26 as in Fig. 4(a)
(left), complicates the microfabrication but is the closest realization of a direct measure-
ment of TF,2. Alternatively, no additional microfabrication steps should be necessary to
create a sensor on top of the film nearby the heater, as shown in Fig. 4(a) (right). However,
care is required to ensure that the T measured by this additional sensor faithfully represents
the actual TF,2.13,27,28 Specifically, to avoid erroneous detection of the edge effects of heat
spreading in the film [see Fig. 5(b) below], a gap should be allowed between the sensor and
the heater. Assuming an isothermal substrate, the numerical results show that the gap width
should be at least 1.6 times the film thickness d to keep the errors below 5%, or 2.6d to
keep the errors below 1%. If the film is anisotropic, the same criteria apply to d(kx/ky)1/2.

FIG. 4: Further considerations for the 3ω method. The plot in (b) represents measurements
of amorphous SiO2 films from Ref. 30.
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Such measurements of TF,2 have previously all been for DC-based measurements,13,24−28

perhaps because DC methods are more prone to errors in determining RS and RS−∞ than
the 3ω method.

3.1.1 The Differential 3ω Method

For many samples, a “differential 3ωmethod” is the best way to account for the difficulties
in determining TF,1 and TF,2.29−33 This is particularly important for samples such as su-
perlattices, which commonly require additional buffer and/or cap layers for sample growth,
adding undesirable series resistances to RH−F and RF−S . As shown in Fig. 4(b), the key
concept is to prepare a set of samples identical in every way except for varying the film
thickness d. This ideally includes a control sample without any film (d = 0). In this way,
the control sample can be used to subtract out the common background contribution of
(RH−F +RF−S +RS +RS−∞) from all measurements, leaving only RF as a function of
d. (Note that this requires a subtle assumption, because once the film is absent the nature of
the contact resistances changes. It is usually assumed that RH−F +RF−S remains constant
even in the control case of no film, although as is apparent from Fig. 4(b), there are one
fewer interfaces once the film is absent, and the mating materials are also different. This
assumption should be acceptable for all but the thinnest, most conductive films.) Further-
more, in films where the important mean free paths of the energy carriers34−36 are small
compared to d, the thermal transport in the film can be expected to be fully diffusive.37,38

In this case, a plot of RH−∞ against d should be a straight line with slope 1/2kbL and in-
tercept representing the background terms (RH−F + RF−S + RS + RS−∞). An example
of data of this sort is given in Fig. 4(b) for SiO2 films.30 This linear relation only holds if
the microstructure and thus k of the deposited film is independent of d.

As detailed in the remainder of this section, this thermal background subtraction inher-
ent in the differential 3ω method can eliminate many (though not all) of the major nonide-
alities in practical experiments. Of course, for best sensitivity, the experiment should still
be designed for RF to make up as large a fraction of the total RH−∞ as possible.

3.2 Background Temperature Rise at Steady State

The heater power in a 3ω experiment is typically chosen such that the temperature oscil-
lation θ2ω is a small fraction of the absolute environment temperature, and then T∞ is
taken as representative of the property being measured. Although this is generally a good
approximation, it should be remembered that the oscillating 2ω heating power of interest
is always superposed on a background DC power, of magnitude equal to the amplitude of
the 2ω power oscillation [Fig. 2(b)]. This steady heating always experiences the full resis-
tance chain from heater to environment, RH−∞, even though the fluctuating temperature
field is usually localized to be insensitive to RS−∞ and much of RS .

Thus, this background heating effect always causes the average sample temperature to
be higher than T∞.39−41 In the best case RF dominates the total RH−∞, and a fluctuating
temperature amplitude of, for example, θ2ω = 4 K, will be accompanied by a DC temper-
ature rise also of θDC = 4 K. In this case, if a film’s k was measured in an environment
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at T∞ = 300 K, then TF,2 also is 300 K, while TF,1 oscillates sinusoidally between 300
and 308 K. Thus, the measured k corresponds to an average film T of 302 K (the spatial
average of 304 and 300 K), a minor correction that is commonly ignored.

However, if the sample is poorly heat sunk to the surroundings, it is not implausible
that RF could make up only one-tenth of RH−∞. Now the same temperature fluctuation
amplitude of θ2ω = 4 K will be accompanied by a DC temperature rise of θDC = 40 K.
In this case, if T∞ = 300 K the time-averaged values of TF,1 and TF,2 are 340 and 336
K, respectively, and thus the average film temperature is really 338 K, rather than 300 K,
which might otherwise be assumed. This problem is usually not an issue if the substrate
has high thermal conductivity and care was taken to mount the sample using appropri-
ate grease, paste, soft foil, and/or clamping pressure. However, it is more likely to be a
concern in cryogenic environments39 because the thermal conductivity of most substrates
and supporting materials dies off at low T . Fortunately, it is straightforward to check for,
and if necessary correct for, this background DC heating issue39,40 by monitoring the 1ω

voltages and using Eq. (11a).

3.3 Substrate Contrast [Table 3 (i)]

The 3ωmethod is most sensitive to the film’s thermal conductivity when it is much smaller
than that of the substrate. This effect was considered analytically by Borca-Tasciuc et al.,42
who showed that the errors are approximately (k/kS)2. These errors are usually safely
below 1%, because in typical experiments the substrate thermal conductivity is∼100 W/m
K or larger (e.g., undoped Si), while the film’s k is well below 10 W/m K. However, caution
is required for lower kS substrates (e.g., glass or quartz) or more thermally conductive
films.

3.4 Edge Effects and the Heater Width for 1D Cross-Plane Flow [Table 3 (ii)]

The ideal configuration depicted in Fig. 1 presumes 1D heat conduction across the film.
However, even in the best case of an isothermal substrate (kS → ∞) it is obvious that
there will be edge effects at x = ±b. Representative calculations for a uniform heat source
are shown in Fig. 5 for three different dimensionless heater widths, (b/d)(kz/kx)1/2. [This
nondimensionalization allows for an anisotropic thermal conductivity tensor in the film,
which we shall return to later, and arises naturally from nondimensionalizing an anisotropic
Laplace equation kx(∂2T/∂x2) + kz(∂2T/∂z2) = 0.]

From Fig. 5, it is clear that the edge effects increase the effective cross-sectional area
for heat conduction, which must reduce RF compared to the expression of Eq. (1). This
effect has been considered analytically for a uniform heat source by Borca-Tasciuc et al.,42
who in the best case of an isothermal substrate (k2

S À kxkz) obtained

RF

d/2kzbL
=

2
π

(
b

d

)(
kz

kx

)1/2
∞∫

0

u−3 sin2(u) tanh

[
u

(
d

b

) (
kx

kz

)1/2
]

du (16)

This result gives the actual film resistance normalized to the value for purely cross-plane
conduction, as a function of the dimensionless heater width. This function is plotted in
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FIG. 5: Edge effects and lateral heat spreading for a heater with uniform heat flux and
finite width. The isotherms in (b–d) are exact results from a numerical calculation, while
the heat flux lines were sketched by hand. For accurate cross-plane 3ω measurements of
kz , these edge effects should be minimized, while they are exploited to advantage in the
variable-linewidth 3ω method to measure kx.

Fig. 6(a) and is within 5% of unity for (b/d)(kz/kx)1/2 > 5.5, and within 1% of unity for
(b/d)(kz/kx)1/2 > 30. In circumstances where further control of the lateral spreading er-
rors is required, they can be virtually eliminated by shaping the film as a micromesa with
the heater integrated on top [Fig. 4(c), right panel].24,26,32 A convenient and physically
appealing approximation to Eq. (16) is to retain the 1D form of Eq. (1) but simply increase
the effective heater width to account for the increased heat transfer, using42

beff = b + 0.38d

(
kx

kz

)1/2

(17)

This approximation is shown by the dashed line in Fig. 6(a). It is helpful for all but the
narrowest heaters, being within 3% of the exact result of Eq. (16) for all (b/d)(kz/kx)1/2 >
0.1.

In the opposite limit of a narrow heater, we find here that the integral of Eq. (16) has
the asymptotic approximation (b/d)(kz/kx)1/2[0.66745 + (2/π)ln(d/b)(kx/kz)1/2], so that

RF ≈
(

1
2L

)(
1

kzkx

)1/2
[
0.66745 +

2
π

ln

((
d

b

) (
kx

kz

)1/2
)]

(18)

where the logarithmic term is reminiscent of the radial conduction resistance for a cylin-
drical shell, consistent with the isotherms of Fig. 5(d). Equation (18) is within 1% of the
exact result of Eq. (16) for all (b/d)(kz/kx)1/2 < 0.4.
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FIG. 6: Edge effects and lateral heat spreading for finite heater width, which can be ex-
ploited to measure kx using the variable-linewidth 3ω method. All calculations assume
a perfectly isothermal substrate. (a) The actual film resistance RF becomes smaller than
the ideal 1D resistance as the heater becomes narrower. (b) For wide heaters, RF is sensi-
tive only to the cross-plane conductivity, while for narrow heaters, RF is sensitive to the
conductivities in both directions. The calculation in (b) is based on the uniform-Q approx-
imation, and the uniform-T approximation differs only slightly.

Equations (16)–(18), as with almost all of this article and the published literature, ap-
proximate the real heater line as a uniform heat source, thereby neglecting any heat redis-
tribution within the heater line. The opposite limiting approximation is to treat the heater as
isothermal (see also Section 3.10), in which case an analytical result for RF has been ob-
tained by Ju et al.43 in terms of elliptical integrals. This function is also shown in Fig. 6(a).
The solution yields 5% and 1% error threshold values for (b/d)(kz/kx)1/2 of 8.4 and 44,
respectively, when compared to the uniform 1D assumption of Eq. (1). These thresholds
are slightly more restrictive than those given above for a constant-Q heater. For an isother-
mal heater, there is also a simple effective-linewidth expression like Eq. (17), but with 0.44
in place of 0.38,3 which is within 3% of the exact result43 as long as (b/d)(kz/kx)1/2 >
0.23.
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3.5 Maximum Frequency for Quasi-Static Heat Conduction through Film
[Table 3 (iii)]

The standard analysis neglects the heat capacity of the film, which is a good approxima-
tion for λ À d. A more detailed analysis by Ju and Goodson44 showed that the thermal
impedance of the film includes a multiplicative factor λ/d tanh(d/λ). This factor is within
1% of unity for λ/d > 5.7, and within 5% of unity for λ/d > 2.5. On the other hand, if the
frequency range extends high enough that λ/d < 1 can be achieved, the measurements can
be used to determine the film’s thermal diffusivity as well.44

3.6 Substrate Thickness to be Semi-Infinite [Table 3 (iv)]
As noted above it is helpful, though not essential, if the substrate can be approximated as
semi-infinite, which requires dS À λS . This issue was considered quantitatively by Borca-
Tasciuc et al.,42 who recommended dS/λS > 5 to keep errors below 1%. The numerical
results of Jacquot et al.45 suggest that even for dS/λS ≈ 2 the semi-infinite solutions ap-
pear to be a good approximation. When the wavelength is longer, the boundary condition
RS−∞between substrate and environment begins to matter, and solutions are known for
isothermal, adiabatic, and arbitrary contact resistance boundaries.30,42

3.7 Substrate Sees Heater as a Line Source [Table 3 (v)]
It is also convenient if b is small enough compared to λS for the line source result of
Eq. (13) to be a good approximation for the substrate’s temperature rise. This is not essen-
tial because various full analytical solutions are known for arbitrary linewidth.30,40,42,46,47

Comparisons of Eq. (13) with the exact solutions from Refs. 42 and 47 show that λS /b
should be larger than around 5 to keep the errors at <1%.

3.8 Heater Length to Neglect End Effects [Table 3 (vi)]
Essentially all analytical work has focused on the 2D heat equation with no variations
along the heater length (y direction), which clearly requires L À λS . This effect was
quantified in a numerical study by Jacquot et al.45 for two configurations of a line heater
on a semi-infinite substrate. The most common is when the heater’s electrical resistance
is only measured over its central half by using voltage taps at y = ±L/4, as shown in
Fig. 1(a), in which case the results showed that the infinite heater assumption causes <1%
error in the temperature as long as L/λS > 4.7. A second configuration is when the heater
resistance is measured over its full length from –L/2 to +L/2, which requires a somewhat
longer heater (L/λS > 15 to keep errors to <1%).45 Therefore, the former configuration is
always recommended.

3.9 Maximum Frequency to Neglect the Heat Capacity of Heater
[Table 3 (vii)]

Simple expressions for the effect of the heater’s heat capacity were obtained by Ju and
Goodson44 and Borca-Tasciuc et al.,42 who both found that the errors are approximately
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(CH /C) (dHd/λ2), where C is the volumetric heat capacity. As noted above, usually λ/d,
and it is often the case that the heater is much thinner than the film (dH ¿ d). Also, around
room temperature and above, C for a large range of fully dense materials does not vary by
more than a factor of two from ∼2 × 106 J/m3K, reflecting the DuLong and Petit heat
capacity result and relatively invariant atomic concentration.48,49 Thus, the errors due to
the heater’s heat capacity should usually be tolerably small. However, care should be taken
if the film is particularly thin, and if the measurements include cryogenic temperatures it
may be beneficial to select a heater with a high Debye temperature to help minimize CH at
low T . (On the other hand, by intentionally pushing the measurement to high frequencies,
the 3ω method has also been used to measure CHdH).50

3.10 Heater as Uniform Q or Uniform T [Table 3 (viii)]

Nearly all 3ω analyses approximate the heater line as a uniformly distributed heat source,
thereby neglecting any in-plane heat spreading within the heater. This issue has received
little quantitative attention, although it has been appreciated from the earliest work3,11 and
commented on in Refs. 45 and 47. We now use the results of Section 3.4 to quantify the
likely bounds of this error, and show that the error is never overwhelming and often may
be simply neglected.

Figure 6(a) shows the two limiting solutions, for the heater as a uniform heat source42

and as a uniform T source,43 both assuming an isothermal substrate. The two solutions con-
verge in the narrow and wide heater limits. For intermediate heater widths, (b/d)(kz/kx)1/2

∼ 1, the thermal resistance for the uniform-T heater is slightly smaller than that of the
uniform-Q heater. Physically, this is because the isothermal heater redistributes the heat
preferentially near the heater edges, where per unit dx of heater width there is increased
solid angle for conduction through the film, thus lowering the effective RF .

The worst-case difference between the two bounds is never more than 6.4%, and is
less than 3% as long as (b/d)(kz/kx)1/2 < 0.06 or (b/d)(kz/kx)1/2 > 4.8. Because this
last wide-heater condition should already be satisfied for a 1D cross-plane measurement
[Table 3 (ii)], we can conclude that the additional complication of distinguishing between
isothermal and constant-Q heaters should be unimportant for properly designed measure-
ments of kz.

In the intermediate regime, which is important for the variable-linewidth 3ω method,
(b/d)(kz/kx)1/2 ∼ 1, and the following scaling argument can be used to choose between
the two heater models. A characteristic resistance for heat spreading within the heater line
is b/2kHdHL, whereas that for 1D heat flow across the film is d/2kbL. Thus, a criterion
to neglect heat redistribution within the heater line is (dHd/b2)(kH /k) ¿ 1. Plugging in
typical numbers suggests that this criterion is often satisfied, in which case the constant-Q
heater solutions again are well justified.

4. INSTRUMENTATION AND HARDWARE ISSUES

The most common circuit used for 3ω measurements of films is shown in Fig. 7. Briefly,
a sinusoidal current source provides a pure 1ω current, which causes 2ω heating, leading
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FIG. 7: The most common electrical connections used for 3ω measurements, facilitating
subtraction of the large 1ω background voltage. Variations are described in the main text.

to the 3ω voltage discussed above [Fig. 2(b)]. However, the 1ω voltage drop across the
sample is typically 100–1000 times larger than the 3ω voltage [by a factor of 2/αθ2ω, see
Eq. (10)], so it is common practice to use a simple subtraction circuit to remove most of
this 1ω background. The rest of this section is devoted to selected practical details about
this measurement configuration. Although presented here in the context of a cross-plane
3ω measurement, many of these issues are also relevant for in-plane 3ω measurements,
3ω measurements of a substrate’s kS ,11 and DC methods.

4.1 Current Source
There are three basic strategies to create a sinusoidal current source. At present, the most
convenient is to use a commercially available AC source (e.g., Keithley 6221A) phase
locked to the lock-in amplifier.32,39,51 Another good option is to combine a home-built
V -to-I circuit with a standard sinusoidal voltage source,52 such as a function generator or
the lock-in amplifier’s own voltage source. Finally, the simplest approach is to use the lock-
in’s voltage source in series with a “ballast resistor” to approximate a current source.53−56

This approximation is only appropriate if the sample resistance is much smaller than the
ballast resistance. Otherwise, a correction factor is available,17 although it should not be
applied57 if electrical background subtraction is in use, as in Fig. 7. Although unlikely, in
the opposite extreme where the sample’s electrical resistance dominates all others, an al-
ternative strategy would be to use a pure 1ω voltage source and measure the 3ω current.17

4.2 Voltage Measurement and Subtraction of 1ω Background
In almost all cases, the 3ω voltage is measured with a commercial lock-in amplifier, al-
though it has also been shown possible to digitize the voltage waveform directly and per-
form the equivalent signal processing in software.54 Various modern lock-in amplifiers can
conveniently detect the third harmonic voltage, removing the need for a frequency tripler
subcircuit used in early work.11

The 1ω background subtraction is most commonly performed as indicated in Fig. 7,
following the original scheme of Cahill.11 Typically, the standard resistor Re,std is an
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adjustable potentiometer or resistance decade box, with low temperature coefficient of re-
sistance α and low thermal resistance to the environment to minimize any spurious 3ω

artifacts. In one approach, the value of Re,std is adjusted manually for every sample and
temperature of interest to closely match the corresponding value of the sample’s electrical
resistance Re0, in which case the amplifier driving VB can simply have a unity gain. Al-
ternatively, at the start of a set of experiments, Re,std can be manually set once to a value
slightly higher than the largest expected value of Re, and then the amplifier driving VB

is placed in series with a multiplying digital-to-analog converter, which is equivalent to a
variable gain element from 0 to 1.11,53 In this case, a computer is used to vary the gain at
every temperature of interest so that (gain)×Re,std ≈ Re0, making the differential signal
VA − VB nearly free of the 1ω background. A related variation is to use a Wheatstone
bridge50,58 to remove the background.

A less common option is to forgo the standard resistor and background subtraction
entirely, instead relying on the lock-in amplifier’s dynamic reserve to detect the small 3ω
signal in the presence of the much larger 1ω background.17,52 This approach simplifies the
circuitry but requires critical attention to the lock-in amplifier’s gain and dynamic reserve
settings. For example, if the 1ω background is 1000× larger than the 3ω voltage, the
dynamic reserve must be at least 60 dB. This is practical with modern lock-ins based on
digital signal processing, which have stated reserves exceeding 100 dB. It should also
be practical with the direct digitization approach54 if the bit depth is sufficient (e.g., 24-
bit digitization corresponds to a generous 144 dB of dynamic range, although this must
accommodate both dynamic reserve and signal resolution).

The standard practice is to perform a frequency sweep at a fixed current, as suggested
in Fig. 3(c). In experiments requiring the utmost accuracy, it may also be helpful to per-
form a current sweep at one or more fixed frequencies, and focus on obtaining the deriva-
tive ∂(V3ω)/∂I3

1ω with the best possible accuracy.32,59 This derivative is closely related
to ∂TH /∂Q, and can be contrasted with the traditional approach of Eqs. (8), which eval-
uates the ratio V3ω/I3

1ω. In an ideal measurement, the derivative and ratio are equal. But
the derivative approach offers the potential advantage of being insensitive to any offset
or related errors in V3ω or I1ω. It has been used to measure thermal resistances with a
repeatability of around ±0.2%.59 If applied to the traditional 3ω method of Eq. (13) to
obtain kS of a semi-infinite substrate, this derivative strategy leads to a “slope-of-slopes”
expression

∂
[
∂(V3ω)/∂(I3

1ω)
]

∂ ln (ω)

4.3 Resistance Thermometry

For electrothermal measurements from room temperature down to ∼50 K, the resistance
versus temperature curve of most microfabrication-friendly metals such as Au, Pt, and Al
is very linear, Re(T ) ≈ a0 + a1T , which is particularly convenient for resistance ther-
mometry. The temperature coefficient of resistance (TCR) α for these metals is typically a
few parts per thousand per Kelvin around room temperature. However, it is essential to cali-
brate each heater’s TCR because the value for metallic thin films will be substantially lower
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(a factor of two is not unusual) than the handbook values, due to increased scattering of
electrons by film surfaces and grain boundaries.60 Referring to the 3ω equations [Eq. (6)],
it is also convenient to recognize that α always appears as the product αRe0 = dRe0/dT ,
because dRe0/dT often has a weak to negligible T dependence even though α and Re0

each have strong T dependencies. Strain gauge effects on Re are almost universally ne-
glected, which may be justified because α is typically ∼100× larger than the mismatch
of thermal expansion coefficients between most heater and substrate pairings. With their
much larger expansion coefficients, polymeric substrates may be an exception, and indeed
strain gauge effects were identified as a consideration for high-accuracy 3ω measurements
of polymethyl methacrylate (PMMA) composite substrates.61

Below about 50 K, the Re(T ) curves for these pure metals flattens out, gradually devi-
ating from the linear approximation and ultimately becoming completely flat as T → 0 K.
Incorporating these nonlinearities into the Re(T ) curve allows the practical range of re-
sistance thermometry to be pushed down to perhaps 20–30 K. This is sometimes done by
approximating Re(T ) with a higher-order polynomial, or as piecewise linear or piecewise
parabolic. A more physically satisfying fit forRe(T ) uses a simple three-parameter Bloch-
Grüneisen model to cover the entire range from 0 K to above room temperature.32,61,62

For sensitive resistance thermometry below ∼20 K, pure Au, Pt, and Al are not useful
and alternative heater materials are required. The Kondo effect of magnetic impurity scat-
tering may be exploited in this regime, which gives a negative dRe/dT below∼20 K for Cu
or Au alloyed with <1% Fe. However, the downside is a regime of vanishing sensitivity at
the minimum in the Re(T ) curve, typically located around 20–30 K.49 Although uncom-
mon in microfabrication, Rh alloyed with less than 1% Fe has a more convenient Re(T )
curve with positive dRe/dT continuously from room temperature to <1 K,63 and has been
applied for related thermal measurements.27 Other alternative materials with good low-
temperature TCR characteristics that may be amenable to heater microfabrication include
ZrNx,64 Si doped with Nb,65 and doped Ge.63,66

For high-temperature measurements above ∼400 K, the challenge becomes the sta-
bility of the metal heater films, whose resistance drifts as they gradually anneal during
an experiment. Among the most common metals, Al is apparently less sensitive than Au
and Pt to this annealing instability, which can be overcome by pre-annealing the films
for an hour at a temperature somewhat higher than the maximum intended measurement
temperature.11,67

4.4 Helpful Checks

Novices approaching a 3ω measurement for the first time might be well served by first
measuring a thick substrate (dS ≥ 1 mm) of low thermal conductivity without a film, such
as amorphous SiO2, to ensure that the signals and data processing behave as expected. The
advantage of measuring a low-kS substrate is that the signals will be much stronger [see
Eqs. (8) and (13)]; however, when a film is measured, the substrate should of course be
chosen with high kS , to ensure that most of the temperature drop occurs across the film. In
the initial stages of a new effort, it is advisable to confirm that the 3ω voltages scale with
the cube of the 1ω current, and that the frequency dependence of V3ω,rms,in-phase/I3

1ω,rms
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follows the form of −const + ln(ω) as expected from Eqs. (8) and (13)17 (note that it is
common practice to omit the sign and plot the absolute value of these quantities). Vari-
ous difficulties such as poor connections or suboptimal lock-in settings may be identified
through these checks.

5. IN PLANE: SUSPENDED FILMS

The electrothermal methods used to measure the in-plane thermal conductivity of films are
considerably more diverse than those used for cross-plane measurements. Two techniques
for suspended films are described in this section, and two for supported films in Section 6.
Another electrothermal method not discussed below uses more extensive microfabrication
to create two suspended platforms.68,69 In general, the supported techniques have easier
sample fabrication, but have more restrictions about their domain of validity and are in-
herently less sensitive. The suspended samples are much more vulnerable to convection
and radiation losses, and must be measured in vacuum. Many of the instrumentation and
hardware issues are similar to those already discussed in Section 4.

5.1 Central Line Heater Method

Figure 8 shows arguably the most common and accurate method for measuring the in-
plane thermal conductivity of films, although it is also the most demanding for sample
fabrication. A suspended film is patterned with a metallic line heater near its center that
also acts as a temperature sensor. Representative dimensions are w = 500 µm, L = 5000
µm, and d = 1 µm. AC or DC joule heating Q enters the film and flows one-dimensionally
in the x direction until it reaches the supporting substrate, at which point the heat can
spread both laterally (x− y) and vertically (z) down into the substrate. Accounting for the
symmetry around the y − z plane and neglecting radiation and convection losses, the film
thermal conductivity is given simply by the 1D conduction result,

k =
Qw

2dL (TF,1 − TF,2)
(19)

As summarized in Table 1, this method has been used to measure a variety of low- and
high-thermal conductivity films, including polymers, Si, and diamond. Besides the self-
evident microfabrication challenges, successful implementation of this method requires
attention to radiation losses, thermal contact and spreading resistances, and other issues,
discussed below in Sections 5.3–5.6.

5.2 Variation: Distributed Self-Heating Method

If the film of interest is electrically conducting with a stable I − V curve, such as a metal,
rather than incorporating an extra dielectric layer between film and heater, it is more con-
venient to use the film itself as both heater and temperature sensor [Figs. 9(a) and 9(b)].
Sufficient electrical current is passed through the suspended portion of the film to cause
measurable self-heating. For metallic bridges near room temperature, a helpful rule of
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FIG. 8: The central line heater method to measure the in-plane thermal conductivity of a
suspended film.

thumb due to the Wiedemann-Franz law is that the temperature rise due to self-heating
is approximately 〈TF 〉 − TF,2 ≈ (1 K) (V/9.4 mV)2, where 〈TF 〉 is the average film
temperature within –w < x < w, and this result is independent of the film’s L, w, d,
and resistivity.59 Neglecting radiation losses, the heat conduction equation is easily solved
to give a parabolic temperature profile TF (x) = –(Q/4wLdk)(x2 – w2) + TF,2, where
Q = I (V + − V −) is the power dissipated in the suspended portion of the film. Four-
probe resistance thermometry as indicated in Fig. 9(a) gives 〈TF 〉, which after averaging
T (x) is

〈TF 〉 = TF,2 +
Qw

6Ldk
(20)

thus allowing k to be determined. This method can also be adapted to measure k of elec-
trically insulating films if they can be coated with a metal layer of known properties
[Fig. 9(c)].1
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FIG. 9: The distributed self-heating method to measure the in-plane thermal conductivity
of a suspended film. (a,b) Metallic film. (c) Variation to measure an electrically insulating
film. The shape and placement of the electrical leads can be important in this method (see
Fig. 11).

5.3 Radiation Losses

Even after placing the samples in high vacuum to eliminate convection, the radiation losses
from the upper and lower surfaces are a critical consideration for suspended films. The
impact of the losses can be estimated as the ratio of Qrad/Qcond. For simplicity, here we use
the linearized radiation coefficient from Eq. (14), and assume the linear TF (x) conduction
solution corresponding to Fig. 8 is correct to leading order. Thus, Qcond = 2kLd(TF,1 –
TF,2)/w and Qrad = 4hradwL[(1/2)(TF,1 + TF,2)− T∞], so

Qrad

Qcond
≈ 2hradw

2 [(1/2) (TF,1 + TF,2)− T∞]
kd (TF,1 − TF,2)

(21)

If we further assume that the radiative surroundings T∞ are at nearly the same temperature
as TF,2,

Qrad

Qcond
≈ hradw

2

kd
(22)

which is also equal to (1/2)(βw)2, where as usual the fin parameter is β =
√

2hrad/kd.21
A further complication is that hrad depends on the emissivity of the film, ε, which is
generally unknown. Allowing for the worst case of hrad = 6.1 W/m2K at 300 K, a film
with d = 1 µm, w = 500 µm, and k = 150 W/m K (e.g., Si) would have a very reasonable



MEASURING THE THERMAL CONDUCTIVITY OF THIN FILMS 37

Qrad/Qcond ≈ 1%, but if that same film were made out of an insulator with k = 1 W/m K,
the radiation losses would be completely unacceptable.

The best way to deal with radiation losses is to choose w such that Qrad is negligible
even for the worst case of ε = 1.26,70−72 If it is desired to determine ε as well, an extension
is to prepare additional samples with larger w, and/or vary the radiation bath temperature
T∞, thereby deliberately obtaining data with non-negligible Qrad.73,74 Another variation
is to measure T (x) at multiple points along the film surface, which when combined with
the related radiation fin equations allows both k and ε to be obtained.75

5.4 Contact and Substrate Spreading Resistance

The contact and spreading resistance from the film edge to the environment is another
important consideration. In terms of Fig. 8, this is RF−∞ ≡ RF−S + RS + RS−∞.
As suggested in Fig. 8, the ideal solution is to include a dedicated temperature sensor
to measure TF,2.71 If, for convenience of fabrication, this sensor is omitted and TF,2 ap-
proximated as T∞, it is important to estimate the intervening resistances to ensure they
are negligible.1,70,73,76 Note the competing demands on w. To neglect TF,2 – T∞ in
comparison with TF,1 – TF,2 one should increase w to make RF as large as possible,
but as noted above this will also increase the radiation losses. One convincing way to
demonstrate TF,2 – T∞ is negligible would be to measure several samples with differ-
ent w. This is very similar in spirit to the differential 3ω method, and a plot analogous
to Fig. 4(b) (right) could also be used to estimate RF−∞ if it were not actually negligi-
ble.

AC heating methods26 have been infrequently applied for membrane measurements,
but offer the potential benefit of localizing the oscillating temperature field within the
membrane and thereby reducing sensitivity to RF−∞. This is closely analogous to one
of the benefits of AC heating in the cross-plane 3ω method. However, as noted above in
Section 3.2, these other series resistances still affect the background DC temperature rise.
Also, transient measurements in a planar geometry may be less convenient because they
fundamentally yield the thermal diffusivity k/C or effusivity

√
kC, rather than purely k

itself.26,73,74

The contact resistance between the heater and film is commonly neglected, which can
be justified by estimating RH−F = R

′′
c /2bL in comparison with RF , where as noted

above typical R
′′
c between metals and dielectrics are ∼10−8–10−7 m2K/W.22,23 However,

if the film has particularly high k (small RF ), and/or a low-conductivity dielectric layer
is included between heater and film as suggested in Fig. 8(b), its contribution to RH−F is
likely to be substantial and cannot be neglected. In this case, it may be necessary to place
another temperature sensor in close proximity to the heater.72,77,78

5.5 Effect of Multiple Layers

As indicated in Figs. 8(b) and 9(c), for measurements of suspended films, it is not uncom-
mon to incorporate additional layers besides the film of interest, for example, for mechani-
cal support, electrical insulation, or as a distributed heat source.1,71−74,78 In this case, it is
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clear that the layers in the stack all contribute to the in-plane heat transfer weighted by their
kd product. Far away from the heater and substrate, there is no concern about temperature
gradients in the z direction because the thickness Biot number, Bi = hradΣ(d/k), will
always be negligible, due to the micron-scale values of d.

5.6 2D Spreading Effects

Although Figs. 8 and 10(a) show a suspended film with free edges at y = ±L/2, to fa-
cilitate microfabrication, sometimes the film is anchored at all four edges, as indicated in
Fig. 10(b). In this case, it is clear that the heat flow in the membrane will be 2D rather than
1D as assumed in Eq. (19). For films with L/w À 1, the edge effects can be neglected for
small y, which is readily exploited by placing the voltage taps to measure the temperature
only near the center of the film [Fig. 10(b)].26,72 Alternatively, the 2D conduction equation
can be solved for the average T from –L/2 to +L/2.73,76 For very low-conductivity films,
the heat losses through the heater leads may also be important.26

5.7 Placement of Voltage Probes

For the self-heated method of Fig. 9, the aspect ratio 2w/L (equivalent to the number of
squares of sheet resistance for the suspended portion) is not always large, typically around
10–20,1,70,79 and sometimes only ∼1.75 In this case, the placement of the voltage probes
requires some attention. Figure 11 summarizes numerical calculations for five representa-
tive configurations of suspended films.3 In all cases, the absolute errors expressed as num-
bers of squares are essentially independent of w (holding all other dimensions constant),
allowing these calculations to be adapted to some other configurations not shown.

FIG. 10: Edge effects and the central line heater method. (a) Best case, supported on two
edges (same as Fig. 8). (b) Supported on all four edges, distorting the heat flow away from
being purely 1D. Note the placement of the current and voltage leads for the heater and
edge T sensor in (b).
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FIG. 11: Examples of five possible configurations for placing the voltage probes to measure
Re in the distributed self-heating method of Fig. 9. In all cases, the suspended test section is
indicated by the dashed line, and the definitions of L and w are consistent with Fig. 9. The
number of squares (2w/L) in the test section in (a) is one, while all others have 10 squares.
Configuration (c) gives the most accurate measurements of Re for the distributed self-
heating method. [Although Fig. 11 emphasizes suspended films, configuration (b) is also
commonly used for cross-plane 3ω measurements of supported films like Fig. 1. In this
case, Fig. 11(b) shows that the effective heater length determining Re should be increased
by 2b× 0.88 compared to the nominal length between the inside edges of the voltage probes,
usually a very minor correction.]

Figure 11 shows that contact configuration (c) will have the smallest relative errors in
determining Re for the distributed self-heating method, followed closely by (b) and (a).
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Configurations like (d) have also been used,79 although the errors are substantially larger
than (c). The electrical errors in (e) are about four times larger than (c). However, if the
supporting substrate exists only under the metal pads [unlike Fig. 9(a) where the supporting
portions of the substrate extend to ±∞ in y], configuration (e) has the advantage that its
thermal RF−S + RS should be only half as large as that for (c). Such a configuration
sometimes arises if the microfabrication ends with a sacrificial release etch. In this case,
choosing between configurations (c) and (e) requires a detailed estimate of the electrical
and thermal resistances near the contacts.

The Re accuracy of all but configuration (d) can be further improved by reducing
the voltage probes’ linewidth p, as lithography permits. For arrangements like (a) and
(b) where the test section is simply a continuous segment of the I+/I− leads with the
same cross section, the absolute error at each side, expressed in squares, is approximately
p/2L (exactly so in the limit p ¿ L). Configurations (c)–(e), on the other hand, all exhibit
2D radial spreading resistances around the transition from the narrow test section to the
much larger I+/I− lines. In this case, the absolute error is expected to scale as ln(p/2L) if
p À L, while becoming independent of p for p ¿ L.

6. IN PLANE: SUPPORTED FILMS

For certain types of films, the microfabrication of large-area suspended samples is inconve-
nient or even impossible. In this case, alternative techniques for measuring the in-plane k
of supported films are an important option, although the resulting measurements will gen-
erally be less sensitive and harder to interpret than the method of Fig. 8. Below, we describe
two such techniques: the variable-linewidth 3ω method and the heat spreader method.

6.1 Variable-Linewidth 3ω

6.1.1 Basic Concept

The cross-plane 3ω method detailed in Sections 2 and 3 emphasizes wide heaters such that
the heat flow was almost perfectly 1D in the z direction, making the measurement sensitive
only to the film’s kz. However, as shown in Fig. 6, it is possible to exploit the opposite ex-
treme of large in-plane heat spreading to determine kx.26,43,80 The narrow-heater regime
can be defined as (b/d)(kz/kx)1/2 of ∼0.1 or less. In this case, the thermal resistance RF

is sensitive to both kx and kz, so it is standard practice to prepare a second heater of much
greater width to independently obtain kz. Greater accuracy could be achieved by measur-
ing a series of multiple heater widths and fitting the observed RF (b) data to Eq. (16), as
in Fig. 6(a). If numerical evaluation of Eq. (16) is deemed inconvenient, the domains of
validity of Eqs. (17) and (18) conveniently overlap, so a simplified expression with better
than 3% accuracy is always available.

6.1.2 Sensitivity

An important weakness of the variable-linewidth 3ω method is that it is inherently less
sensitive to kx as compared to the suspended methods. This can be quantified using the
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results of Section 3.4. Even in the limit of a very narrow heater line, we see from Eq. (18)
that RF goes very nearly as k

−1/2
x , so that a 10% change in kx causes at best only a 5%

change in RF ; and obviously in the limit of a wide heater line RF is not sensitive to kx

at all. We define the dimensionless sensitivity in the usual way as –[∂ln(RF )/∂ln(kx,z)],
where the negative sign is introduced here because increasing k always reduces RF . The
sensitivity for Eq. (16) is shown in Fig. 6(b), which shows that even for a relatively narrow
heater of (b/d)(kz/kx)1/2 ∼ 0.1, the sensitivity of RF to changes in kx is only ∼0.35 (e.g.,
increasing kx by 10% would reduce RF by only 3.5%). In contrast, for the two methods
presented above for suspended films, the sensitivity of RF to changes in kx is simply 1.

6.1.3 Conditions for the Variable-Linewidth 3ω Method to be Appropriate

• Lithography permits narrow enough linewidths to achieve (b/d)(kz/kx)1/2 < 0.1,
ensuring the sensitivity to kx is better than 0.35.

• Even if only kx is of interest, kz must also be known or measured with high accuracy.
Recall from Eqs. (16)–(18) that RF depends on both kx and kz. In particular, Eq. (18)
and Fig. 6(b) show that any uncertainty in kz is magnified in kx; for example, at
(b/d)(kz/kx)1/2 = 0.1, a 10% error in kz would cause a 19% error in kx, while at
(b/d)(kz/kx)1/2 = 1, a 10% error in kz would cause a 56% error in kx.

• The substrate thermal conductivity is high enough to be approximated as isothermal.
For an anisotropic film, Borca-Tasciuc et al.42 showed that the substrate contrast
criterion of Table 3 (i) generalizes to Error ≈ (kxkz/k2

S). This criterion means that
the variable-linewidth 3ω method is generally not applicable to measure films with
high in-plane thermal conductivity, such as graphene. In this case, the heat spreader
method described in Section 6.2 is more appropriate.

6.2 Heat Spreader Method

The basic concept of the heat spreader method is shown in Fig. 12. The film of interest
should have high in-plane thermal conductivity and is supported by a thin insulation layer
on a high-thermal conductivity substrate. Joule heating from the heater line flows into the
film of interest, which, acting as an effective heat spreader, moves the heat laterally. At the
same time, the heat also bleeds gradually downward into the isothermal substrate. Thus, by
measuring the nearby temperature distribution, it is possible to extract the in-plane thermal
conductivity of the film of interest.

Because of the complexity of fabrication and interpretation, this heat spreader method
is less common than the variable-linewidth 3ω method, but may prove useful when the lat-
ter cannot be applied. A good example is found in the measurements of the in-plane thermal
conductivity of encased graphene and ultrathin graphite in Ref. 2. For representative values
kx ≈ 300 W/m K, kz ≈ 6 W/m K, and d ≈ 0.003 µm, to ensure adequate sensitivity to kx,
the variable-linewidth 3ω method would require heater linewidths 2b < 0.004 µm, which
is completely impractical for lithography. Also very importantly, the contact resistance R

′′
c

between graphite and substrate is likely to be∼10−8 m2 K/W,32 which is nowhere close to



42 ANNUAL REVIEW OF HEAT TRANSFER

FIG. 12: A heat spreader method to measure the in-plane thermal conductivity of a sup-
ported film. Joule heating from the line heater is spread laterally by the high-k film of
interest, while at the same time leaking vertically through the low-k insulation layer. For
sufficiently small values of the fin parameter β, the temperature profile in the film obeys
the classical fin equation, decaying exponentially in x.

negligible compared to the cross-plane film resistance d/kz ∼ 5 × 10−10 m2 K/W, making
it impossible to apply the usual 3ω analyses of Section 3.4.

Returning to Fig. 12, we recognize that this heat spreader system is analogous to the
classic fin problem from elementary heat transfer, where the “fin” is the film of interest and
the “convection coefficient” arises from the cross-plane conduction through the insulating
film: hi = ki,z/di. Because hi is typically of order ∼106 W/m2 K (1 µm film of SiO2),
any additional air convection or radiation to the surroundings should be negligible. The
additional thermal contact resistances between film and insulator, and between insulator
and substrate, should also be incorporated into hi if known, but are usually negligible in
comparison.

Following the well-known solutions for long fins,21 the temperature profile in the plane
of the film is ideally

TF(x)− T∞ =
Q

2L

√
di

ki,zkxd
e−βx (23)

where now the fin parameter is given by β =
√

ki,z/kxddi. In this context, the character-
istic fin length

β−1 =

√
kxddi

ki,z
(24)

is also known as the thermal healing length.81 Thus, by measuring the temperature profile
at several x locations, it is possible to fit for β, and finally obtain kx.

Note carefully that Eqs. (23) and (24) are only sensitive to the in-plane thermal con-
ductivity of the film (kx) and the cross-plane thermal conductivity of the insulation layer
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(ki,z). To understand the physical significance of this distinction, it is helpful to compare
β−1 of Eq. (24) with the related thermal spreading distance for a single film on an isother-
mal substrate (Fig. 5), which we see from Eq. (17) is of order

√
kxd2

kz
(25)

Comparing Eqs. (24) and (25) reveals that the fundamental effect of the underlying insu-
lation layer in Fig. 12 is to decouple the dominant modes of heat transfer in the x and z
directions: the in-plane conductance is controlled by the film of interest (kxd), while the
out-of-plane conductance is controlled by the extra insulation layer [ki,z/di in Eq. (24)].
In contrast, in the variable-linewidth 3ω method of Fig. 5, both the in-plane (kxd) and
out-of-plane (kz/d) conductances are controlled by the film.

This decoupling allows much greater control over the length scale of in-plane heat
spreading. Referring back to the example for ultrathin graphite,2 even if the sample flake
could somehow be deposited directly on an isothermal substrate with negligible contact
resistance, the spreading length of Eq. (25) is only 0.02 µm. However, if that same graphite
flake is deposited as a heat spreader on an insulating film with ki,z = 1 W/m K and di =
0.3 µm, the thermal healing length increases over 20-fold, to β−1 ≈ 0.5 µm, a length scale
now plausibly accessible by electron-beam lithography.2

The fin analogy of Eqs. (23) and (24) is only valid in limited circumstances. The ther-
mal healing length β−1 must be much larger than the film thickness di + d to justify
approximating the heat conduction in the insulator as quasi-1D in z. The healing length
should also be at least as large as the sensor pitch, and substantially larger than the sensor
width (all in the x direction). These conditions were satisfied in the study of silicon films
on SiO2 insulation with a Si substrate (i.e., an SOI wafer) by Asheghi et al.,81 with repre-
sentative values k ≈ 100 W/m K, ki ≈ 1 W/m K, d ≈ 1 µm, and di ≈ 3µm, corresponding
to β−1 ≈ 17 µm. The authors used numerical solutions of the 2D conduction equation to
confirm that this healing length was acceptably large compared to the other length scales.
In the more recent study of ultrathin graphite,2 the submicron values of β−1 were not large
enough to justify the fin Eqs. (23) and (24). Instead the authors used finite element meth-
ods to analyze the 3D heat conduction problem, and validated the analysis with a control
experiment on a metal film of known kx.

7. SUMMARY AND RECOMMENDATIONS
This chapter has presented the major electrothermal methods for measuring the thermal
conductivity of thin films in both cross-plane and in-plane directions. Several highlights
and recommendations are given below, and representative studies are summarized in Table 1.

7.1 Cross Plane
The 3ω method now appears to be widely accepted as the preferred electrothermal tech-
nique for measuring the cross-plane thermal conductivity of films, for good reason. As
an AC technique, the 3ω method has advantages over DC techniques in determining or
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eliminating the thermal resistances of the substrate and its contact to the surroundings, and
should also give more stable electrical measurements.

Cross-plane measurements are easiest for low-k films that are relatively thick, to max-
imize RF of Fig. 1(b). Other requirements for accurate 3ω measurements have been
thoroughly documented in the literature, with the major criteria summarized in Table 3.
Common points requiring attention include ensuring the heater line is wide enough to
approximate the film conduction as 1D, ensuring the substrate is thick enough to be ap-
proximated as semi-infinite, and avoiding very high frequencies where the heat capacities
of the film and/or heater matter.

The differential 3ω method of Figs. 3(c) and 4(b) is preferred when practical because it
eliminates many potential sources of uncertainty, most notably the thermal resistances of:
the substrate, whether semi-infinite or finite and even at very low frequencies; any interven-
ing buffer or insulation layers, as long as they can be held constant; and the interlayer con-
tact resistances. (Note that this requires a subtle assumption, because once the film is absent
the nature of the contact resistances changes. It is usually assumed that RH−F + RF−S

remains constant even in the control case of no film, although as is apparent from Fig. 4(b)
there are one fewer interfaces once the film is absent, and the mating materials are also
different. This assumption should be acceptable for all but the thinnest, most conductive
films.) However, as long as careful attention is paid to the issues of Table 3, accurate results
are possible, even for a single-thickness measurement.

7.2 In Plane

Measurements of the in-plane thermal conductivity are less common than for the cross-
plane direction, while the methods used are more diverse. In-plane measurements can be
divided into those for suspended and supported films. In general, methods for suspended
films are more sensitive, accurate, and flexible, but the microfabrication to suspend the film
is sometimes a serious challenge.

Figures 8 and 9 show the major measurement methods for suspended films. The most
important concern is making the film length (2w) long enough so that the spreading and
contact resistances at substrate and heater can be neglected in comparison, but still short
enough to ignore radiation losses and 2D effects due to finite L. Although these errors
can in many cases be estimated satisfactorily, their (in)significance can also be checked
experimentally by measuring several films with different w, and by including separate
temperature sensors near the heater and the film-substrate junction.

Techniques for measuring the in-plane thermal conductivity of supported films are
more specialized and include the variable-linewidth 3ω method (Figs. 5 and 6) and the heat
spreader method (Fig. 12). Compared to the methods for suspended films, these supported
methods are inherently less sensitive (signals scaling at best as k

1/2
x ), so their primary ap-

peal is the potentially simpler microfabrication. However, the need for relatively narrow
and/or closely spaced heating/sensing lines must not be overlooked. Both supported meth-
ods work best for relatively thick films with high kx, whereas their requirements for kz

differ substantially. The variable-linewidth 3ω method works best for films with small kz,
which must be known with high accuracy. On the other hand, the heat spreader method
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works best for films with moderate to large kz, which drops out of the analysis completely
if d/kz ¿ di/ki. Finally, the error analysis in these supported configurations is relatively
undeveloped in the literature, especially as compared to the cross-plane 3ω method (e.g.,
Table 3), and owing to the complexity of the samples may ultimately require numerical
rather than analytical approaches.2
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